Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(4): e0174323, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38470180

RESUMO

Soil and rhizosphere bacteria act as a rich source of secondary metabolites, effectively fighting against a diverse array of pathogens. Certain Pseudomonas species harbor biosynthetic gene clusters for producing both pyoluteorin and 2,4-diacetylphloroglucinol (2,4-DAPG), which are polyketides that exhibit highly similar antimicrobial spectrum against bacteria and fungi or oomycete. A complex cross talk exists between pyoluteorin and 2,4-DAPG biosynthesis, and production of 2,4-DAPG was strongly repressed by pyoluteorin, yet the underlying mechanism is still elusive. In this study, we find that the TetR family transcription factor PhlH is involved in the cross talk between pyoluteorin and 2,4-DAPG biosynthesis. PhlH binds to a palindromic sequence within the promoter of phlG (PphlG), which encodes a C-C bond hydrolase responsible for degrading 2,4-DAPG. As a signaling molecule, pyoluteorin disrupts the PhlH-PphlG complex by binding to PhlH, leading to decreased levels of 2,4-DAPG. Proteomics data suggest that pyoluteorin regulates multiple physiological processes including fatty acid biosynthesis and transportation of taurine, siderophore, and amino acids. Our work not only reveals a novel mechanism of cross talk between pyoluteorin and 2,4-DAPG biosynthesis, but also highlights pyoluteorin's role as a messenger in the complex communication network of Pseudomonas.IMPORTANCEAntibiosis serves as a crucial defense mechanism for microbes against invasive bacteria and resource competition. These bacteria typically orchestrate the production of multiple antibiotics in a coordinated fashion, wherein the synthesis of one antibiotic inhibits the generation of another. This strategic coordination allows the bacterium to focus its resources on producing the most advantageous antibiotic under specific circumstances. However, the underlying mechanisms of distinct antibiotic production in bacterial cells remain largely elusive. In this study, we reveal that the TetR family transcription factor PhlH detects the secondary metabolite pyoluteorin and mediates the cross talk between pyoluteorin and 2,4-DAPG biosynthesis in the biocontrol strain Pseudomonas protegens Pf-5. These findings hold promise for future research, potentially informing the manipulation of these systems to enhance the effectiveness of biocontrol agents.


Assuntos
Fenóis , Floroglucinol/análogos & derivados , Pseudomonas fluorescens , Pirróis , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação Bacteriana da Expressão Gênica , Pseudomonas/metabolismo , Antibacterianos/farmacologia , Pseudomonas fluorescens/genética
2.
Biochem Biophys Res Commun ; 704: 149672, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38401306

RESUMO

4-hydroxyphenylpyruvate dioxygenase (HPPD) Inhibitor Sensitive 1 (HIS1) is an endogenous gene of rice, conferring broad-spectrum resistance to ß-triketone herbicides. Similar genes, known as HIS1-like genes (HSLs), exhibit analogous functions and can complement the herbicide-resistant characteristics endowed by HIS1. The identification of HIS1 and HSLs represents a valuable asset, as the intentional pairing of herbicides with resistance genes emerges as an effective strategy for crop breeding. Encoded by HIS1 is a Fe(II)/2-oxoglutarate-dependent oxygenase responsible for detoxifying ß-triketone herbicides through hydroxylation. However, the precise structure supporting this function remains unclear. This work, which determined the crystal structure of HIS1, reveals a conserved core motif of Fe(II)/2-oxoglutarate-dependent oxygenase and pinpoints the crucial residue dictating substrate preference between HIS1 and HSL.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase , Herbicidas , Oryza , Oryza/metabolismo , 4-Hidroxifenilpiruvato Dioxigenase/química , 4-Hidroxifenilpiruvato Dioxigenase/genética , 4-Hidroxifenilpiruvato Dioxigenase/metabolismo , Cicloexanonas/química , Cicloexanonas/farmacologia , Ácidos Cetoglutáricos , Oxigenases , Herbicidas/farmacologia , Compostos Ferrosos , Inibidores Enzimáticos/farmacologia
3.
Adv Healthc Mater ; : e2400047, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38364079

RESUMO

The presence of multidrug-resistant bacteria has challenged the clinical treatment of bacterial infection. There is a real need for the development of novel biocompatible materials with broad-spectrum antimicrobial activities. Antimicrobial hydrogels show great potential in infected wound healing but are still being challenged. Herein, broad-spectrum antibacterial and mechanically tunable amyloid-based hydrogels based on self-assembly and local mineralization of silver nanoparticles are reported. The mineralized hydrogels are biocompatible and have the advantages of sustained release of silver, prolonged antimicrobial effect, and improved adhesion capacity. Moreover, the mineralized hydrogels display a significant antimicrobial effect against both Gram-positive and Gram-negative bacteria in cells and mice by inducing membrane damage and reactive oxygen species toxicity in bacteria. In addition, the mineralized hydrogels can rapidly accelerate wound healing by the synergy between their antibacterial activity and intrinsic improvement for cell proliferation and migration. This study provides a modular approach to developing a multifunctional protein hydrogel platform based on biomolecule-coordinated self-assembly for a wide range of biomedical applications.

4.
Biochem Biophys Res Commun ; 689: 149230, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-37984176

RESUMO

Legionella pneumophila aspartate aminotransferase (Lpg0070) is a member of the transaminase and belongs to the pyridoxal 5'-phosphate (PLP)-dependent superfamily. It is responsible for the transfer of α-amino between aspartate and α-ketoglutarate to form glutamate and oxaloacetate. Here, we report the crystal structure of Lpg0070 at the resolution of 2.14 Å and 1.7 Å, in apo-form and PLP-bound, respectively. Our structural analysis revealed the specific residues involved in the PLP binding and free form against PLP-bound supported conformational changes before substrate recognition. In vitro enzyme activity proves that the absence of the N-terminal arm reduces the enzyme activity of Lpg0070. These data provide further evidence to support the N-terminal arm plays a crucial role in catalytic activity.


Assuntos
Legionella pneumophila , Aspartato Aminotransferases/metabolismo , Legionella pneumophila/metabolismo , Sítios de Ligação , Modelos Moleculares , Fosfato de Piridoxal/metabolismo , Ácido Glutâmico/metabolismo , Cristalografia por Raios X
5.
Int J Mol Sci ; 24(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37895170

RESUMO

N-acetyl sugar amidotransferase (NASAT) is involved in the lipopolysaccharide (LPS) biosynthesis pathway that catalyzes the formation of the acetamido moiety (sugar-NC(=NH)CH3) on the O-chain. So far, little is known about its structural and functional properties. Here, we report the crystal structure of an N-acetyl sugar amidotransferase from Legionella pneumophila (LpNASAT) at 2.33 Å resolution. LpNASAT folds into a compact basin-shaped architecture with an unusually wide and open putative substrate-binding pocket and a conserved zinc ion-binding tetracysteine motif. The pocket contains a Rossmann-like fold with a PP-loop, suggesting that the NASAT-catalyzed amidotransfer reaction probably requires the conversion of ATP to AMP and PPi. Our data provide structural insights into the NASAT family of proteins, and allow us to possibly identify its functionally important regions.


Assuntos
Lipopolissacarídeos , Açúcares , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo
6.
Nanomaterials (Basel) ; 13(14)2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37513044

RESUMO

The effect of ZnO nanoparticles (ZnO NPs), with different concentrations in simulated water, on the activity of sulfate-reducing bacteria (SRB) and their adhesion behaviour on stainless-steel surfaces, with and without visible light treatment, were investigated. The results showed that the concentration of ZnO NPs and light treatment greatly influenced the antibacterial performance of the NPs. In the water solution without light treatment, the low concentration (no more than 1 mg/L) of ZnO NPs in the aqueous solution promoted the growth of SRB, and the amount of biofilm attached to the stainless-steel surface increased. As the concentration increased, ZnO NPs exhibited antibacterial effects. In water under visible light irradiation, ZnO NPs showed antibacterial performance at all the concentrations studied (0.5~50 mg/L), and the antibacterial efficiency increased with the increase in the concentration of NPs. The determination results of the reactive oxygen species showed that light treatment can stimulate ZnO NPs in water to generate ·OH and O2·-, which exhibited good antibacterial properties. The adhesion amount of SRB on the stainless-steel surface was inversely proportional to the antibacterial efficiency of ZnO NPs.

7.
J Mol Cell Biol ; 15(5)2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-37253620

RESUMO

To facilitate survival, replication, and dissemination, the intracellular pathogen Legionella pneumophila relies on its unique type IVB secretion system (T4SS) to deliver over 330 effectors to hijack host cell pathways in a spatiotemporal manner. The effectors and their host targets are largely unexplored due to their low sequence identity to the known proteins and functional redundancy. The T4SS effector SidN (Lpg1083) is secreted into host cells during the late infection period. However, to the best of our knowledge, the molecular characterization of SidN has not been studied. Herein, we identified SidN as a nuclear envelope-localized effector. Its structure adopts a novel fold, and the N-terminal domain is crucial for its specific subcellular localization. Furthermore, we found that SidN is transported by eukaryotic karyopherin Importin-13 into the nucleus, where it attaches to the N-terminal region of Lamin-B2 to interfere with the integrity of the nuclear envelope, causing nuclear membrane disruption and eventually cell death. Our work provides new insights into the structure and function of an L. pneumophila effector protein, and suggests a potential strategy utilized by the pathogen to promote host cell death and then escape from the host for secondary infection.


Assuntos
Legionella pneumophila , Legionella pneumophila/metabolismo , Laminas/metabolismo
8.
Ecotoxicol Environ Saf ; 256: 114896, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37054474

RESUMO

Triclosan (TCS) is a commonly used antibacterial agent present in personal care and household products. Recently, there have been increasing concerns about the association between children's health and TCS exposure during gestation, but the toxicological effects of TCS exposure on embryonic lung development remain undetermined. In this study, through using an ex vivo lung explant culture system, we found that prenatal exposure to TCS resulted in impaired lung branching morphogenesis and altered proximal-distal airway patterning. These TCS-induced dysplasias are accompanied by significantly reduced proliferation and increased apoptosis within the developing lung, as a consequence of activated Bmp4 signaling. Inhibition of Bmp4 signaling by Noggin partially rescues the lung branching morphogenesis and cellular defects in TCS-exposed lung explants. In addition, we provided in vivo evidence that administration of TCS during gestation leads to compromised branching formation and enlarged airspace in the lung of offspring. Thus, this study provides novel toxicological information on TCS and indicated a strong/possible association between TCS exposure during pregnancy and lung dysplasia in offspring.


Assuntos
Triclosan , Gravidez , Animais , Feminino , Criança , Humanos , Mamíferos , Morfogênese/fisiologia , Pulmão , Proteína Morfogenética Óssea 4
9.
ISME J ; 17(6): 823-835, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36899058

RESUMO

Carbohydrate utilization is critical to microbial survival. The phosphotransferase system (PTS) is a well-documented microbial system with a prominent role in carbohydrate metabolism, which can transport carbohydrates through forming a phosphorylation cascade and regulate metabolism by protein phosphorylation or interactions in model strains. However, those PTS-mediated regulated mechanisms have been underexplored in non-model prokaryotes. Here, we performed massive genome mining for PTS components in nearly 15,000 prokaryotic genomes from 4,293 species and revealed a high prevalence of incomplete PTSs in prokaryotes with no association to microbial phylogeny. Among these incomplete PTS carriers, a group of lignocellulose degrading clostridia was identified to have lost PTS sugar transporters and carry a substitution of the conserved histidine residue in the core PTS component, HPr (histidine-phosphorylatable phosphocarrier). Ruminiclostridium cellulolyticum was then selected as a representative to interrogate the function of incomplete PTS components in carbohydrate metabolism. Inactivation of the HPr homolog reduced rather than increased carbohydrate utilization as previously indicated. In addition to regulating distinct transcriptional profiles, PTS associated CcpA (Catabolite Control Protein A) homologs diverged from previously described CcpA with varied metabolic relevance and distinct DNA binding motifs. Furthermore, the DNA binding of CcpA homologs is independent of HPr homolog, which is determined by structural changes at the interface of CcpA homologs, rather than in HPr homolog. These data concordantly support functional and structural diversification of PTS components in metabolic regulation and bring novel understanding of regulatory mechanisms of incomplete PTSs in cellulose-degrading clostridia.


Assuntos
Proteínas de Bactérias , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Celulose , Histidina , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/química , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Fosfotransferases/genética , Carboidratos , Firmicutes/genética , DNA
10.
Chronobiol Int ; 39(12): 1554-1566, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36354126

RESUMO

Circadian rhythms are important for organisms to adapt to the environment and maintain homeostasis. Disruptions of circadian rhythms contribute to the occurrence, progression, and exacerbation of diseases, such as cancer, psychiatric disorders, and metabolic disorders. Alcohol-induced liver disease (ALD) is one of the most prevalent liver diseases. Disruptions of the circadian clock enhance the ALD symptoms using chronic mice models or genetic manipulated mice. However, chronic models are time consuming and clock gene deletions interfere with metabolisms. Here, we report that constant light (LL) condition significantly disrupted the circadian clock in an acute ALD model, resulting in aggravated ALD phenotypes in wild type mice. Comparative transcriptome analysis revealed that the alcohol feeding affected the circadian pathway, as well as metabolic pathways. The acute alcohol feeding plus the LL condition further interfered with metabolic pathways and dysregulated canonical circadian gene expressions. These findings support the idea that disrupting the circadian clock could provide an improved ALD mouse model for further applications, such as facilitating identification of potential therapeutic targets for the prevention and treatment of ALD.Abbreviations: ALD, alcohol-induced liver disease; LD, 12 h light _ 12 h dark; LL, constant light; HF, high-fat liquid control diet; ETH, ethanol-containing diet; NIAAA, National Institute on Alcohol Abuse and Alcoholism; TTFLs, transcription-translation feedback loops; FDA, US Foods and Drug Administration; NAFLD, non-alcoholic fatty liver disease; RER, respiratory exchange rate; DEGs, differentially expressed genes; H&E, haematoxylin and eosin; ALT, alanine transaminase; AST, aspartate transaminase; TG, triglycerides.


Assuntos
Relógios Circadianos , Hepatopatias Alcoólicas , Camundongos , Animais , Relógios Circadianos/genética , Ritmo Circadiano/genética , Fígado/metabolismo , Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/metabolismo , Etanol/metabolismo , Etanol/farmacologia , Modelos Animais de Doenças
11.
Microbiol Spectr ; 10(4): e0276321, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35946941

RESUMO

Mycobacterium abscessus is an emerging human pathogen leading to significant morbidity and even mortality, intrinsically resistant to almost all the antibiotics available and so can be a nightmare. Mechanisms of its intrinsic resistance remain not fully understood. Here, we selected and confirmed an M. abscessus transposon mutant that is hypersensitive to multiple drugs including rifampin, rifabutin, vancomycin, clofazimine, linezolid, imipenem, levofloxacin, cefoxitin, and clarithromycin. The gene MAB_0189c encoding a putative arabinosyltransferase C was found to be disrupted, using a newly developed highly-efficient strategy combining next-generation sequencing and multiple PCR. Furthermore, selectable marker-free deletion of MAB_0189c recapitulated the hypersensitive phenotype. Disruption of MAB_0189c resulted in an inability to synthesize lipoarabinomannan and markedly enhanced its cell envelope permeability. Complementing MAB_0189c or M. tuberculosis embC restored the resistance phenotype. Importantly, treatment of M. abscessus with ethambutol, a first-line antituberculosis drug targeting arabinosyltransferases of M. tuberculosis, largely sensitized M. abscessus to multiple antibiotics in vitro. We finally tested activities of six selected drugs using a murine model of sustained M. abscessus infection and found that linezolid, rifabutin, and imipenem were active against the MAB_0189c deletion strain. These results identified MAB_0189 as a crucial determinant of intrinsic resistance of M. abscessus, and optimizing inhibitors targeting MAB_0189 might be a strategy to disarm the intrinsic multiple antibiotic resistance of M. abscessus. IMPORTANCE Mycobacterium abscessus is intrinsically resistant to most antibiotics, and treatment of its infections is highly challenging. The mechanisms of its intrinsic resistance remain not fully understood. Here we found a transposon mutant hypersensitive to a variety of drugs and identified the transposon inserted into the MAB_0189c (orthologous embC coding arabinosyltransferase, EmbC) gene by using a newly developed rapid and efficient approach. We further verified that the MAB_0189c gene played a significant role in its intrinsic resistance by decreasing the cell envelope permeability through affecting the production of lipoarabinomannan in its cell envelope. Lastly, we found the arabinosyltransferases inhibitor, ethambutol, increased activities of nine selected drugs in vitro. Knockout of MAB_0189c made M. abscessus become susceptible to 3 drugs in mice. These findings indicated that potential powerful M. abscessus EmbC inhibitor might be used to reverse the intrinsic resistance of M. abscessus to multiple drugs.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Tuberculose , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Etambutol/uso terapêutico , Humanos , Imipenem/farmacologia , Imipenem/uso terapêutico , Linezolida/uso terapêutico , Camundongos , Camundongos Knockout , Testes de Sensibilidade Microbiana , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium abscessus/genética , Pentosiltransferases , Permeabilidade , Rifabutina/farmacologia , Rifabutina/uso terapêutico
12.
J Infect Dev Ctries ; 16(4): 622-629, 2022 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-35544623

RESUMO

INTRODUCTION: Plasmid-mediated colistin resistance genes, especially mcr-3 combined with the fosfomycin resistance gene fosA3, are a grave health concern. Our study was designed to determine the epidemiological characteristics of the combination of mcr-3 and fosA3 in Anhui province, China. METHODOLOGY: A total of 127 multi-drug-resistant (MDR) E. coli strains were assessed for antibiotic resistance/sensitivity to detect mcr-3 and fosA3 using polymerase chain reaction (PCR) and sequencing. The genes of interest were conjugated using EC600, and replicon and sequence types (STs) were identified by PCR-based replicon typing (PBRT) and multilocus sequence typing (MLST). Cluster similarity and genomic relatedness among the positive isolates were confirmed by Xbal PFGE. RESULTS: The processed E. coli isolates were highly resistant to the tested antibiotics; the prevalence of mcr-3 was 0.78% in the transferable IncP-type plasmid in ST131, whereas fosA3 prevalence was 38.58% among different transferable plasmids, including IncFIIK, IncFII and IncA/C, and in various STs including ST69, ST1193, ST12, ST46, ST57, ST1196, ST38, ST95, ST131, ST7584 and ST10184. Both were successfully transferred to EC600. The Xbal PFGE cluster exposed similarities among the STs. CONCLUSIONS: Our results show that to control the spread of colistin and fosfomycin resistance genes in human pathogens, the ban on colistin must be continued in animal feeding farms not only in China but around the world; additionally, awareness platforms on the use of colistin must be implemented and strict policies in poultry and pig farms must be maintained. Furthermore, fosfomycin misuse by patients and overuse by physicians must be strictly managed to stop the spread of fosfomycin resistance.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Fosfomicina , Animais , Antibacterianos/farmacologia , Colistina/farmacologia , Escherichia coli/genética , Infecções por Escherichia coli/epidemiologia , Proteínas de Escherichia coli/genética , Fosfomicina/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus/métodos , Plasmídeos/genética , Suínos , beta-Lactamases/genética
13.
J Biol Chem ; 298(6): 102027, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35568198

RESUMO

The production of secondary metabolites is a major mechanism used by beneficial rhizobacteria to antagonize plant pathogens. These bacteria have evolved to coordinate the production of different secondary metabolites due to the heavy metabolic burden imposed by secondary metabolism. However, for most secondary metabolites produced by bacteria, it is not known how their biosynthesis is coordinated. Here, we showed that PhlH from the rhizobacterium Pseudomonas fluorescens is a TetR-family regulator coordinating the expression of enzymes related to the biosynthesis of several secondary metabolites, including 2,4-diacetylphloroglucinol (2,4-DAPG), mupirocin, and pyoverdine. We present structures of PhlH in both its apo form and 2,4-DAPG-bound form and elucidate its ligand-recognizing and allosteric switching mechanisms. Moreover, we found that dissociation of 2,4-DAPG from the ligand-binding domain of PhlH was sufficient to allosterically trigger a pendulum-like movement of the DNA-binding domains within the PhlH dimer, leading to a closed-to-open conformational transition. Finally, molecular dynamics simulations confirmed that two distinct conformational states were stabilized by specific hydrogen bonding interactions and that disruption of these hydrogen bonds had profound effects on the conformational transition. Our findings not only reveal a well-conserved route of allosteric signal transduction in TetR-family regulators but also provide novel mechanistic insights into bacterial metabolic coregulation.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Pseudomonas fluorescens , Transdução de Sinais , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ligação de Hidrogênio , Ligantes , Mupirocina/metabolismo , Oligopeptídeos/metabolismo , Floroglucinol/metabolismo , Conformação Proteica , Pseudomonas fluorescens/metabolismo , Metabolismo Secundário
14.
iScience ; 25(4): 104085, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35372814

RESUMO

Hepatic lipid accumulation is closely associated with nonalcoholic fatty liver disease (NAFLD). Adipose-triglyceride-lipase (ATGL) regulates triglyceride hydrolysis and maintains energy homeostasis in hepatocytes. Identifying key factors in the regulation of ATGL will help tackle hepatic lipid accumulation and related metabolic diseases. Herein, we demonstrate that syntaxin11 (STX11), a member of the SNARE family, generally expressed in immune cells, mediates lipid metabolism by binding to ATGL and inhibiting lipid droplet degradation and lipid autophagy in hepatocytes. Our data show that the C-terminal of STX11 and the patatin domain-containing segment of ATGL have direct physical interactions. Thus, STX11 overexpression prevents spatial translocation of ATGL onto LDs by recruitment of ATGL to the ER. Conversely, STX11 deficiency in hepatocytes promotes lipid hydrolysis, and the ATGL-SIRT1 signaling pathway enhances lipophagy. Overall, this study uncovered that the regulation of lipolysis and lipophagy is achieved by STX11 through the attenuation of ATGL action in hepatocytes.

15.
Chem Commun (Camb) ; 58(11): 1804-1807, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35040445

RESUMO

We present the finding of a dimeric ACE2 peptide mimetic designed through side chain cross-linking and covalent dimerization. It has a binding affinity of 16 nM for the SARS-CoV-2 spike RBD, and effectively inhibits the SARS-CoV-2 pseudovirus in Huh7-hACE2 cells with an IC50 of 190 nM and neutralizes the authentic SARS-CoV-2 in Caco2 cells with an IC50 of 2.4 µM. Our study should provide a new insight for the optimization of peptide-based anti-SARS-CoV-2 inhibitors.


Assuntos
Antivirais/farmacologia , Fragmentos de Peptídeos/farmacologia , Peptidomiméticos/farmacologia , SARS-CoV-2/efeitos dos fármacos , Sequência de Aminoácidos , Enzima de Conversão de Angiotensina 2/química , Antivirais/síntese química , Antivirais/metabolismo , Linhagem Celular Tumoral , Humanos , Testes de Sensibilidade Microbiana , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/metabolismo , Peptidomiméticos/síntese química , Peptidomiméticos/metabolismo , Ligação Proteica , Domínios Proteicos , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo
16.
Talanta ; 236: 122864, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34635246

RESUMO

Real time controllable assembling/aptasensing approach via plasmonic graphene oxide (GO) nanocomposites has been firstly proven to simultaneously give tuning of micro-nano structure of plasmonic GO and ultrasensitive detection of MC-LR toxin. In order to fabricate the assembly, a high-quality hollow triangular nanoplate AgClAu:p-GO (HTNP AgClAu:p-GO) can act as a template; furthermore, we combine DNA-hybridization with biotin-strepavidin binding protocol for tuning the HTNP AgClAu:p-GO assemblies from networks to laminar structure, and simultaneously loading Raman reporters into the assemblies. The dynamic assembling process can be utilized as a real time SERS aptasensor for detecting MC-LR due to ratiometric introduction of MC-LR toxin inhibiting formation of plasmonic p-GO assembly via toxin/aptamer bioconjugation and causing reverse alteration of SERS signal for giving ultrasensitive SERS detection of MC-LR. A detection limit of 6.3pM with a wide linear range from 10pM to 5 nM can be achieved. When the aptasensor has been applied in real samples, the real time assembling/aptasensing approach shows recoveries from 98% to 103% with relative standard deviation (RSD) lower than 3%, expecting that one-step nanofabrication and sensing strategy can be extended to in-field test of environmental contaminants.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Grafite , Limite de Detecção , Toxinas Marinhas , Microcistinas
17.
mSystems ; 6(6): e0091121, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34726491

RESUMO

Multidrug resistance (MDR) efflux pumps are involved in bacterial intrinsic resistance to multiple antimicrobials. Expression of MDR efflux pumps can be either constitutive or transiently induced by various environmental signals, which are typically perceived by bacterial two-component systems (TCSs) and relayed to the bacterial nucleoid, where gene expression is modulated for niche adaptation. Here, we demonstrate that RstA/RstB, a TCS previously shown to control acid-induced and biofilm-related genes in Escherichia coli, confers resistance to multiple antibiotics in Pseudomonas fluorescens by directly regulating the MDR efflux pumps EmhABC and MexCD-OprJ. Moreover, we show that phosphorylation of the conserved Asp52 residue in RstA greatly enhances RstA-DNA interaction, and regulation of the multidrug resistance by RstA/RstB is dependent on the phosphorylation of the RstA Asp52 residue by RstB. Proteome analysis reveals RstA/RstB also positively regulates the efflux pump MexEF-OprN and enzymes involved in anaerobic nitrate respiration and pyoverdine biosynthesis. Our results suggest that, by coupling the expression of multiple efflux pumps and anaerobic nitrate respiration, RstA/RstB could play a role in defense against nitrosative stress caused by anaerobic nitrate respiration. IMPORTANCE Microenvironmental hypoxia typically increases bacterial multidrug resistance by elevating expression of multidrug efflux pumps, but the precise mechanism is currently not well understood. Here, we showed that the two-component system RstA/RstB not only positively regulated expression of several efflux pumps involved in multidrug resistance, but also promoted expression of enzymes involved in anaerobic nitrate respiration and pyoverdine biosynthesis. These results suggested that, by upregulating expression of efflux pumps and pyoverdine biosynthesis-related enzymes, RstA/RstB could play a role in promoting bacterial tolerance to hypoxia by providing protection against nitrosative stress.

18.
Infect Drug Resist ; 14: 1325-1333, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33854345

RESUMO

PURPOSE: Antimicrobial resistance, especially carbapenem resistance Enterobacteriaceae and plasmid mediated mobile colistin resistance, is a serious issue worldwide. This study was designed to determine the epidemiological characteristics of plasmid mediated colistin resistance and carbapenem resistant Enterobacteriaceae from tertiary A hospital located in Hefei, China. METHODS: Totally, 158 carbapenems resistant Enterobacteriaceae (CRE) were screened for antibiotic susceptibility, mcr-1, extended spectrum ß-lactamases (ESBLs), metallo-ß-lactamases (MBLs), and fosfomycin resistance genes using PCR and sequencing. The sequence types were identified by multilocus sequence typing (MLST). Plasmid profiles were determined by PCR based replicon typing (PBRT), and the plasmid sizes were confirmed by southern blotting. RESULTS: The isolates showed high MIC50 and MIC90 for all antimicrobials, except tigecycline, meropenem, and colistin. The main Carbapenemase genes were bla KPC-2 (90.5%), bla NDM-1(3.7%), bla OXA-48(5.6%) and fosA3 (14.5%). The bla CTXM-15 found 36.7%, mcr-1 (3.7%) recorded in six isolates. PBRT revealed bla KPC-2 in K. pneumoniae on IncR, IncFII, and IncA/C. bla NDM-1 in E. coli on IncFII, whereas in E. cloacae noticed on IncHI2 plasmid. mcr-1 was recorded among IncFIIK, IncFII, and IncF in E. coli, K. pneumoniae, and E. cloacae. Resistance genes (mcr-1, bla NDM-1, bla KPC-2) harboring plasmids are successfully trans-conjugant to EC-600. A high incidence of ST11 was observed in K. pneumoniae carbapenem resistant isolates. While in E. coli, multiple STs were identified. However, mcr-1 in ST23 was identified for the first time in Anhui Province. Among Enterobacter cloacae, ST270 detected carrying bla NDM-1. Southern-hybridization confirmed the plasmid sizes 35-150kb. CONCLUSION: This study indicates the co-carrying of mcr-1, bla KPC-2, and bla NDM-1 among clinical isolates, the prevalence of different Enterobacteriaceae STs is alarming, especially in E. coli. Holding such a resistance profile is a threat for humans and animals, which may be transferred between the strains through plasmid transfusion. Persistent control actions are immediately necessary to combat this hazard.

19.
Plant J ; 106(5): 1401-1413, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33745166

RESUMO

Naringenin, the biochemical precursor for predominant flavonoids in grasses, provides protection against UV damage, pathogen infection and insect feeding. To identify previously unknown loci influencing naringenin accumulation in rice (Oryza sativa), recombinant inbred lines derived from the Nipponbare and IR64 cultivars were used to map a quantitative trait locus (QTL) for naringenin abundance to a region of 50 genes on rice chromosome 7. Examination of candidate genes in the QTL confidence interval identified four predicted uridine diphosphate-dependent glucosyltransferases (Os07g31960, Os07g32010, Os07g32020 and Os07g32060). In vitro assays demonstrated that one of these genes, Os07g32020 (UGT707A3), encodes a glucosyltransferase that converts naringenin and uridine diphosphate-glucose to naringenin-7-O-ß-d-glucoside. The function of Os07g32020 was verified with CRISPR/Cas9 mutant lines, which accumulated more naringenin and less naringenin-7-O-ß-d-glucoside and apigenin-7-O-ß-d-glucoside than wild-type Nipponbare. Expression of Os12g13800, which encodes a naringenin 7-O-methyltransferase that produces sakuranetin, was elevated in the mutant lines after treatment with methyl jasmonate and insect pests, Spodoptera litura (cotton leafworm), Oxya hyla intricata (rice grasshopper) and Nilaparvata lugens (brown planthopper), leading to a higher accumulation of sakuranetin. Feeding damage from O. hyla intricata and N. lugens was reduced on the Os07g32020 mutant lines relative to Nipponbare. Modification of the Os07g32020 gene could be used to increase the production of naringenin and sakuranetin rice flavonoids in a more targeted manner. These findings may open up new opportunities for selective breeding of this important rice metabolic trait.


Assuntos
Flavanonas/metabolismo , Flavonoides/metabolismo , Glucosiltransferases/metabolismo , Gafanhotos/fisiologia , Hemípteros/fisiologia , Oryza/genética , Doenças das Plantas/imunologia , Acetatos/metabolismo , Animais , Mapeamento Cromossômico , Ciclopentanos/metabolismo , Glucosiltransferases/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Oryza/enzimologia , Oryza/imunologia , Oryza/parasitologia , Oxilipinas/metabolismo , Melhoramento Vegetal , Doenças das Plantas/parasitologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas/genética
20.
Water Sci Technol ; 83(4): 877-885, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33617494

RESUMO

Attachment and separation of sulfate-reducing bacteria (SRB) biofilm on stainless steel (SS) in simulated cooling water with and without different sterilization treatments was investigated by calculation of surface energy, theoretical work of adhesion and analysis of Scanning Electron Microscope/Energy Dispersive Spectrometer. Two types of biocides, glutaraldehyde and Polyhexamethylene guanidine (PHMG), and electromagnetic treatment were used in this paper. The results show that PHMG had the best bactericidal performance, followed by glutaraldehyde, and electromagnetic treatment was the lowest one. The theoretical work of adhesion was used to quantitatively evaluate the adhesion of biofilm on the surface of the metal. Theoretical work of adhesion between biofilm and SS in simulated cooling water increased with time. The theoretical adhesion work and adhesive capacity of biofilm to SS surface increased after treating with glutaraldehyde while decreasing after treating with PHMG and electromagnetic field. As the theoretical adhesion work decreased, the biofilm was gradually removed from the stainless steel surface. On the contrary, the biofilm adhered more firmly. The results of SEM were also consistent with the calculation results of theoretical adhesion work. The results obtained indicated that electromagnetic treatment had the lowest effect in sterilization but the best in biofilm separation.


Assuntos
Desinfetantes , Aço Inoxidável , Aderência Bacteriana , Biofilmes , Desinfecção , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...